eV) m/e (rel intensity) 328 (M⁺, 100), 310 (6.6), 186 (59); IR (CCl₄) 3584 (m), 1715 (s) cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 7.23 (1 H, d, J = 8.5 Hz), 6.79 (1 H, dd, J = 8.5, 2.6 Hz), 6.68 (1 H, d, J = 2.6 Hz), 4.74 (1 H, br s, C₁₁-H), 3.80 (3 H, s), 2.87-2.85 (2 H, m), 2.64 (1 H, d, J = 11 Hz, C₉-H), 2.50-2.46 (1 H, m), 2.37-2.16 (5 H, m), 1.91-1.84 (1 H, m), 1.70-1.64 (1 H, m), 1.63-1.57 (2 H, m), 1.42 (1 H, br s), 1.40–1.33 (1 H, m), 1.01 (3 H, d, J = 6.6 Hz, C_{17a} –CH₃), 0.94 (3 H, s, C₁₃--CH₃); ¹³C NMR (CDCl₃, 22.5 MHz) δ 212.4, 157.8, 139.7, 127.6, 125.9, 114.2, 112.5, 67.4, 56.8, 55.1, 50.1, 48.4, 43.4, 40.9, 40.8, 33.2, 30.2, 25.7, 25.4, 15.6, 7.2. Anal. Calcd for C₂₁H₂₈O₃: C, 76.79; H, 8.59. Found: C, 76.87; H, 8.62. Third fraction: C/D trans compound 7a; 550 mg; white crystal; mp 189-190 °C (ether); TLC $R_f = 0.30$ (50% Et-OAc/hexane); HPLC $R_v = 9.3$ (20% EtOAc/heptane); GC/MS (70 eV) m/e (rel intensity) 328 (M⁺, 100), 310 (8); IR (CHCl₃) 1698 cm⁻¹; ¹H NMR (CDCl₃, 500 MHz) δ 7.21 (1 H, d, J = 8.8 Hz), 6.77 (1 H, dd, J = 8.8, 2.7 Hz), 6.68 (1 H, d, J = 2.7 Hz), 4.77 (1 H, br s, C₁₁-H), $3.79 (3 H, s), 2.94-2.81 (2 H, m), 2.57 (1 H, t, J = 9 Hz, C_{17}-H), 2.51$ $(1 \text{ H}, \text{ dd}, J = 13.6, 2.3 \text{ Hz}, C_9 - \text{H}), 2.30 - 2.23 (1 \text{ H}, \text{m}), 2.17 (3 \text{ H}, \text{s}),$ 1.97-1.94 (1 H, m), 1.84-1.78 (2 H, m), 1.73-1.66 (1 H, m), 1.59-1.55 (1 H, m), 1.48–1.36 (4 H, m), 0.89 (3 H, s, C_{18} –H); ¹³C¹³C NMR (CDCl₃, 22.5 MHz) & 208.8, 157.7, 139.8, 127.5, 125.9, 114.6, 112.3, 67.6, 64.3, 56.2, 55.0, 49.7, 44.5, 43.8, 33.2, 31.0, 29.9, 27.1, 23.7, 22.4, 15.8

 11β ,20-Dihydroxy-5,19-cyclopregnan-3-one (10). To a stirred solution of diisobutoxy ketal 8d (85 mg, 0.19 mmol) in ether (5 mL) at room temperature was added CH_2I_2 (0.16 mL, 2 mmol), followed by $EtZnl^{16}$ in ether solution (2 mL, 1 M, 2 mmol). The mixture was allowed to stir at room temperature for 10 h during which time a white precipitate formed. A solution of sodium thiosulfate (1 g of $Na_2S_2O_3$ in 20 mL of H₂O) was added and the mixture was extracted with CH₂Cl₂. The organic layer was dried, filtered, and concentrated to give an oil that was treated with 3 N HCl (0.5 mL) in THF (2 mL) at room temperature for 30 min. The mixture was partitioned between CH₂Cl₂ and saturated NaHCO3 solution. The organic layer was dried, filtered, and concentrated to provide crude cyclopropyl ketone as an oil that was purified by flash chromatography (100% EtOAc) to give three fractions.

The first fraction was tentatively assigned as cyclopropane 9c: white foam, 8 mg, $R_f = 0.51$ (TLC, 100% EtOAc); ¹H NMR (CDCl₃, 90 MHz) & 3.40-3.22 (m), 0.85-0.38 (cyclopropyl H). The second and third fractions, 44 mg, 0.13 mmol, 70% yield, were diastereomers (C_{20}). Each of them was successively crystallized from ethyl acetate, displaying the following properties. Isomer A: white crystal; mp 197-200 °C; TLC R_f = 0.20 (100% EtOAc); ¹H NMR (CDCl₃, 500 MHz) δ 4.37 (1 H, br s, C_{11} -H), 3.72 (1 H, m, C_{20} -H), 2.61 (1 H, AB, J = 17.6 Hz, C_4 -H), $2.55 (1 \text{ H}, AB, J = 17.6 \text{ Hz}, C_4\text{-H}), 2.37\text{-}2.30 (1 \text{ H}, m), 2.24 (1 \text{ H}, dd, J)$ J = 14. 2.5 Hz, 2.17–2.09 (2 H, m), 2.05–2.00 (1 H, m), 1.98–1.90 (1 H, m), 1.80 (1 H, br s), 1.78-1.64 (3 H, m), 1.61-1.49 (2 H, m), 1.41-1.31 (3 H, m), 1.29-1.23 (2 H, m), 1.27 (3 H, d, J = 6 Hz, C_{21} -H), 1.22-1.17 (1 H, m), 1.16-1.12 (1 H, m), 0.96-0.88 (1 H, m), 0.90 (3 H, s, C_{18} -H), 0.75 (1 H, AB, J = 6 Hz, cyclopropyl H), 0.74 (1 H, AB, J = 6 Hz, cyclopropyl H); ¹³C NMR (CDCl₃, 22.5 MHz) δ 211.3, 70.2, 68.0, 59.2, 55.8, 50.2, 47.5, 45.2, 41.4, 35.7, 31.3, 30.2, 27.2, 25.8, 25.6, 23.8, 23.3, 21.8, 18.4, 15.7, 14.9; high-resolution MS exact mass calcd for $C_{21}H_{32}O_3$, 332.2351; found, 332.2395. Isomer B: white crystal; mp 176-178 °C; TLC $R_f = 0.10$ (100% EtOAc); ¹H NMR (CDCl₃, 500 MHz) δ 4.35 (1 H, br s, C₁₁-H), 3.77-3.74 (1 H, m, C₂₀-H), 2.60 (1 H, AB, J = 17.6 Hz, C₄-H), 2.55 (1 H, AB, J = 17.6 Hz, C₄-H), 2.43 (1 H, dd, J = 14.2, 2.5 Hz), 2.36-2.31 (1 H, m), 2.19-2.10 (2 H, m),2.09-2.01 (1 H, m), 1.79-1.62 (4 H, m), 1.60-1.48 (3 H, m), 1.38-1.28 $(3 \text{ H}, \text{m}), 1.22-1.12 (3 \text{ H}, \text{m}), 1.15 (3 \text{ H}, \text{d}, J = 6.2 \text{ Hz}, C_{21}-\text{H}), 0.99$ $(3 \text{ H}, \text{ s}, \text{ C}_{18}\text{-H}), 0.97\text{--}0.88 (1 \text{ H}, \text{ m}), 0.76 (1 \text{ H}, AB, J = 5.6 \text{ Hz},$ cyclopropyl H), 0.74 (1 H, AB, J = 5.6 Hz, cyclopropyl H); ¹³C NMR (CDCl₃, 22.5 MHz) & 211.5, 70.2, 68.2, 59.1, 55.5, 50.3, 47.6, 46.4, 42.2, 35.8, 31.4, 30.6, 27.4, 26.0, 25.2, 24.2, 23.5, 21.9, 18.6, 15.8, 14.9.

Acknowledgment. This research was supported by the National Institute of Child Health and Human Development, National Institutes of Health (HD-14669). High-field NMR spectra were recorded at the National Science Foundation Northeast Regional NMR Facility, Yale University, Department of Chemistry. We are grateful to Dr. Brigette Segmuller for the X-ray structure of 7b and Dr. Earl B. Whipple (Pfizer) for the high-resolution mass spectra.

Registry No. (±)-1, 88212-14-0; 1.Li, 79066-28-7; (±)-2, 88212-15-1; (\pm) -3a, 88212-16-2; (\pm) -3b, 88212-17-3; (\pm) -4a, 88212-18-4; (\pm) -4b, 88212-19-5; (±)-4c, 88212-20-8; (±)-4d, 79066-20-9; (±)-5a, 88212-21-9; (±)-5b, 88212-22-0; (±)-6a, 79066-16-3; (±)-6b, 88212-23-1; (±)-7a, 88212-24-2; (±)-7b, 88269-19-6; (±)-8a (isomer 1), 88212-25-3; (±)-8a (isomer 2), 88212-26-4; (±)-8b (isomer 1), 88212-27-5; (±)-8b (isomer 2), 88212-28-6; (±)-8c (isomer 1), 88212-29-7; (±)-8c (isomer 2), 88212-30-0; (\pm) -8d (isomer 1), 88212-31-1; (\pm) -8d (isomer 2), 88212-32-2; (±)-9a (isomer 1), 88212-33-3; (±)-9b (isomer 2), 88212-34-4; (±)-9c (isomer 1), 88212-35-5; (±)-10 (isomer 1), 88212-36-6; (\pm) -10 (isomer 2), 88212-37-7; (\pm) -11 (isomer 1), 88269-20-9; (\pm) -11 (isomer 2), 88269-21-0; (±)-12 (isomer 1), 81800-93-3; CH₃C=CC-H₂CH₂OH, 10229-10-4; CH₃C≡CCH₂CH₂CN, 18719-29-4; CH₃C≡ CCH2CH2CH0, 41143-14-0; (EtO)2POCMeNaCo2Et, 67492-95-9; (E)-CH₁C=CCH₂CH₂CH=C(CH₁)COOEt, 88212-38-8; (E)-CH₃C= $CCH_2CH_2CH = C(CH_3)CH_2OH$, 88212-39-9; (E)-CH₃C = CCH₂CH₂CH=C(CH₃)CH₂Cl, 58403-77-3.

Supplementary Material Available: Listing of additional spectral data (5 pages). Ordering information is given on any current masthead page.

Total Synthesis of (-)-Ptilocaulin

William R. Roush^{*1a} and Alan E. Walts^{1b}

Contribution from the Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139. Received June 20, 1983

Abstract: An efficient 14-step synthesis of (-)-ptilocaulin (2) from (R)-(+)-3-methylcyclohexanone is described (7.4% overall yield). This work establishes the absolute stereochemistry of the natural product to be that shown for 1.

Ptilocaulin (1) is a novel antitumor antibiotic isolated from the Caribbean sponge Ptilocaulis aff. P. spiculfer (Lamarck, 1814).² We have developed and report herein an efficient synthesis of (-)-ptilocaulin (2),³ which establishes the absolute stereochemistry

of the natural product be that shown for 1. A key feature of our approach is the use of an intramolecular nitrone cyclization⁴ to

 ⁽a) Roger and Georges Firmenich Assistant Professor of Natural Products Chemistry; Fellow of the Alfred P. Sloan Foundation, 1982-1984.
 (b) National Cancer Institute Predoctoral Trainee.
 (2) Harbour, G. C.; Tymiak, A. A.; Rinehart, K. L, Jr.; Shaw, P. D.; Hughes, R. G., Jr.; Mizsak, S. A.; Coats, J. H.; Zurenko, G. E.; Li, L. H.; Kuentzel, S. L. J. Am. Chem. Soc. 1981, 103, 5604.

722 J. Am. Chem. Soc., Vol. 106, No. 3, 1984

establish the stereochemistry of C-3a and C-8b relative to C-5a. We assumed from the outset that control of these centers would be crucial to the success of the plan. In practice, however, the center at C-8b proved to be of little strategic importance since the natural product possesses the thermodynamically most stable configuration at this center.

Our synthesis of 2 (Scheme I) originates from (R)-(+)-3 ($[\alpha]^{23}_{D}$ +12.0°),⁵ which, in turn, is readily available from (+)-pulegone.⁶ Sulfenylation of 3 with diphenyl disulfide followed by oxidation of the resulting sulfide with MCPBA provided the known sulfoxide 4 in 65% yield.⁷ Alkylation of 4 with *n*-butyl iodide via the dianion⁸ (2.2 equiv of 1 M LDA in THF, 6 equiv of HMPT, -35 °C, 3 h; then 1.2 equiv of n-butyl iodide, 2 h, -35 °C) afforded a complex mixture of diastereomeric butylated sulfoxides⁹ (80% after chromatography), which, without separation, was heated in CCl₄ in the presence of 0.95 equiv of CaCO₃ (24 h), thus affording enone 5 in 52% overall yield from $4.^{10}$ Treatment of 5 with 1.2 equiv of TiCl₄ and 1.5 equiv of allytrimethylsilane¹¹ at -78 °C in CH₂Cl₂ afforded ketone 6a/6b in 95% yield, with complete control of the stereochemistry at C-5a relative to C-7.12 A mixture of isomers, however, was obtained at C-8, the ratio of which varied as a function of the reaction scale.¹³ These isomers have been separated and brought independently through the synthesis to 2. On a routine basis, however, such mixtures were used without separation.14

Conversion of 6a/6b to aldehyde 9a/9b and thence to isoxazolidine 10a/10b proceeded in a straightforward fashion. Thus, the kinetic enolate of 6a/6b (generated by using 1.6 equiv of 0.5 M LDA, THF, -78 °C, 1.5 h) was treated with 2.0 equiv of HMPT (0 °C, 20 min) followed by 2.8 equiv of chlorodiethyl phosphate (23 °C, 4 h). Selective hydroboration of the resulting enol phosphate derivative using 2.0 equiv of 9-BBN (0.35 M in THF, 0 °C, 4 h) provided alcohol 7a/7b in 68% overall yield. Addition of a THF solution of 7a/7b (0.35 M, containing 3.75 equiv of t-BuOH) to excess lithium (10 equiv) in ethylamine (0.5 mL/mol of Li, containing 2 equiv of t-BuOH) provided alcohol 8a/8b, oxidation of which with 1.5 equiv of pyridinium chlorochromate afforded aldehyde 9a/9b in 85% yield. Finally, treatment of 9a/9b with 1.0 equiv of benzylhydroxylamine in benzene (0.05 M, 80 °C, 8 h) effected smooth conversion to isoxazolidine 10a/10b via the intermediate nitrone⁴ in 80% yield $(R_f 10a, 0.5; R_f 10b, 0.57, silica gel, 1:4 ether-hexane)$. A single

- (4) (a) Black, D. S. C.; Crozier, R. F.; Davis, V. C. Synthesis 1975, 205.
 (b) Padwa, A. Angew. Chem., Int. Ed. Engl. 1976, 15, 123. (c) Oppolzer,
- (b) Idda 1977, 16, 10. (d) Tufariello, J. J. Acc. Chem. Res. 1979, 12, 396.
 (5) Literature [a]_D²⁰ +12.5°: Goering, H. L.; Silversmith, E. F. J. Am. Chem. Soc. 1955, 77, 5172.
- (6) (a) Rupe, H. Liebigs Ann. Chem. 1927, 459, 195. (b) Allinger, N. L.; Riew, C. K. J. Org. Chem. 1975, 40, 1316.
 - (7) Oppolzer, W.; Petrzilka, M. Helv. Chim. Acta 1978, 61, 2755.
- (8) Grieco, P. A.; Pogonowski, C. S. J. Chem. Soc., Chem. Commun. 1975, 72.
- (9) Structures for all new compound (a and b series) are fully consistent with the spectroscopic data summarized in the supplementary material section.
- (10) Compound 5 is a ca. 6:1 mixture of epimers at C.8, with the major epimer tentatively assigned the β configuration. Racemic 5 served as an intermediate in Synder's synthesis (see ref 3).
- (11) Hosomi, A.; Sakurai, H. J. Am. Chem. Soc. 1977, 99, 1673.

(12) The stereochemistry of the Sakurai reaction with a variety of cycloalkenones was reported while our work was in progress: Blumenkopf, T. A.; Heathcock, C. H. J. Am. Chem. Soc. 1983, 105, 2354. See also: Heathcock, C. H.; Kleinman, E. F.; Binkley, E. S. J. Am. Chem. Soc. 1982, 104, 1054.

(13) The ratios of **6a/6b** produced from **5** were 1.6 (0.5 mmol scale), 1:2 (3 mmol), and 2:1 (6 mmol). The latter is the equilibrium mixture, as determined by K_2CO_3 -MeOH equilibration of either pure **6a** or **6b**. Relevant data for **6a**: ¹H NMR δ 0.77 (d, 3 H, C-7 CH₃); R_f 0.63 (silica gel, 1:4 ether-hexane). **6b**: ¹H NMR δ 0.8 (d, 3H, C-7 CH₃); R_f 0.58 (silica gel 1:4 ether-hexane). Note Added in Proof: We have recently observed that this epimerization occurs during reaction workup. Essentially no epimerization occurred, even in large-scale experiments, when the dark red reaction mixture was quenched with H₂O and maintained at -78 °C until the solution turned colorless.

(14) The yields for each step leading from 6a/6b to 2 were comparable whether pure a, pure b or a/b mixtures were used.

^a Series "a" designates C-8 α-butyl epimer, "b" designates the β-butyl epimer. ^b LDA, THF, -78 °C; (PhS)₂. ^c MCPBA, CH₂Cl₂, -78 °C. ^d 2.2 equiv of 1 M LDA in THF, 6 equiv of HMPT, -35 °C, 3 h; 1.2 equiv of *n*-butyl iodide, 2 h, -35 °C. ^e 0.95 equiv of CaCO₃, CCl₄, 65 °C, 24 h. ^f TiCl₄, allyltrimethylsilane, -78 °C, 1.5 h. ^g 1.6 equiv of 0.5 M LDA, -78 °C, 1.5 h; 2.8 equiv of chlorodiethyl phosphate, 23 °C, 4 h. ^h 2.0 equiv of 0.35 M 9-BBN in THF, 0 °C, 4 h. ⁱ 10 equiv of Li, CH₃CH₂NH₂, *t*-BuOH, THF. ^j PCC, CH₂Cl₂, 23 °C. ^k 1.0 equiv of PhCH₂-NHOH, C₆H₆, 80 °, 8 h. ⁱ Excess Zn, 10 M AcOH, 55 °C, 3.5 h. ^m Excess Jones reagent, AcOH, aqueous HCl, 0 °C. ⁿ Pd black, 10% HCO₂H/CH₃OH, 23 °C, 1.5 h. ^o 1-Guanyl-3,5-dimethylpyrazole nitrate, 145-155 °C, neat, 6 h.

diastereomer (10a or 10b, repsectively) was obtained when isomerically pure 9a or 9b was subjected to these conditions.

Final elaboration of 10a/10b to ptilocaulin required considerably more experimentation than orginally anticipated. The route that proved most efficacious is oulined below. Cleavage of the nitrogen-oxygen bond of 10a/10b was effected by using excess Zn in 10 M aqueous acetic acid (55 °C, 3.5 h), which provided 11a/11b in 95% yield. The hydrochloride salt of 11a/11b was then oxidized with a large excess of Jones reagent in glacial acetic acid (0 °C, 2.5 h) to give 12a/12b in 95% yield. Under these conditions, however, some epimerization (ca. 5-10%) occurred at C-8b.¹⁵ Whereas this epimerization was initially very trou-

⁽³⁾ A synthesis of racemic 1 has been recently reported: Snider, B. B.; Faith, W. C. Tetrahedron Lett., 1983, 861.

blesome, it proved, ultimately, to be of no major consequence to the successful completion of the syntheis.¹⁶

Benzylamino ketone 12a/12b so obtained was smoothly deprotected, albeit again with considerable epimerization, via transfer hydrogenolysis (Pd black, 10% HCO₂H/CH₃OH, 23 °C, 1.5 h) to give the sensitive amino ketone 13a/13b in 95% yield. Condensation of 13b with the nitrate salt of 1-guanyl-3,5-dimethylpyrazole (GDMP)¹⁷ (1 equiv, 120 °C, neat, 15 min) provided a $\sim 1:1:2$ mixture of three isomers (inseparable) tentatively assigned structures 14, 15b, and 2, respectively, in 48% yield.¹⁸ Under

the same conditions 13a afforded a mixture containing predominately 15a and a small amount of 14, but with only a trace of

(16) The successful solution to this synthesis relies on thermodynamic control. Indeed, epimeric mixture of 12a/12b brought through the sequence afford ptilocaulin by using the high-temperature GDMP step described in the text.

(17) Bannard, R. A. B.; Casselman, A. A.; Cockburn, W. F.; Brown, G. M. Can. J. Chem. 1958, 36, 1541.

(18) All compounds containing the guanidinium moiety were isolated and characterized as nitrate salts.

2 present. Either mixture, however, could be equilibrated to 2 (89% after chromatography) by treatment with guanidine in refluxing C₆H₆ (12-24 h). Alternatively, treatment of **13a/13b** with 1.1 equiv of GDMP under equilibrating conditions (145-155 °C, neat, 6 h) afforded (-)-2 directly in 58-65% yield. The ptilocaulin nitrate (mp 183-184 °C; $[\alpha]^{22}_{D} - 73.9^{\circ}$ (c 0.31, 99.9% CH₃OH)) so obtained was identical in all respects (with the exception of optical rotation) with an authentic sample of the natural product.¹⁹ The absolute configuration of (+)-ptilocaulin is thus established as that represented by 1.

Acknowledgment. This research was generously supported by grants from the National Cancer Institute (Training Grant No. T32-CA-09112) and the National Science Foundation (Grant No. 8106987-CHE).

Registry No. 1, 78777-02-3; **2**, 88154-76-1; **2**·HNO₃, 88195-34-0; **3**, 13368-65-5; **4**, 88154-77-2; **4** (butylated), 88057-80-1; **5a**, 88154-78-3; **5b**, 88154-79-4; **6a**, 88154-80-7; **6a**-enol diethylphosphate, 88057-81-2; **6b**, 88155-70-8; **6b**-enol diethylphosphate, 88057-82-3; **7a**, 88057-64-1; **7b**, 88057-65-2; **8a**, 88057-66-3; **8b**, 88057-67-4; **9a**, 88057-68-5; **9b**, 88057-69-6; **10a**, 88057-70-9; **10b**, 88154-81-8; **11a**, 88057-71-0; **11a**+HCl, 88057-73-2; **11b**, 88057-72-1; **11b**-HCl, 88057-74-3; **12a**, 88057-75-4; **12a** (C-8b epimer), 88057-78-3-4; **12b**, 88057-76-5; **12b** (C-8b epimer), 88057-78-7; **13b** (C-8b epimer), 88057-78-7; **14**, 88154-82-9; **15a**, 88057-79-8; **15b**, 88154-83-0; GDMP, 38184-47-3; benzylhydroxylamine, 622-30-0; 4 (butylated), 88057-80-1.

Supplementary Material Available: Spectroscopic data and physical constants for 5a,b, 6a,b, 7a,b, 8a,b, 9b, 10a,b, 11a,b, 12a,b, 13a,b, and synthetic ptilocaulin (9 pages). Ordering information is given on any current masthead page.

Synthesis of (R)-(+)-[10.10]- and -[22.10]Betweenanene and Related *trans*-Cyclododecenes

James A. Marshall* and Katherine E. Flynn

Contribution from the Department of Chemistry, University of South Carolina, Columbia, South Carolina 29208. Received June 17, 1983

Abstract: A general synthesis of 1,2-disubstituted *trans*-cycloalkenes is described starting from 2-methylenecyclododecanone. Addition of dimethylsulfonium methylide affords the vinyl oxirane 1 which undergoes highly selective S_N2' addition with organocopper reagents derived from alkylmagnesium bromides and copper(I) iodide in THF-Me₂S. The resulting *trans*-cyclododecenylcarbinols 2 are coupled via the diethyl phosphate derivatives 3 to the dialkylcyclododecenes 4. Sharpless resolution of alcohols 2 leads via the same sequence to optically active cyclododecenes 4 of R configuration. A second coupling route entails oxidation of the alcohols 2 to aldehydes 12, addition of Grignard reagents to give the allylic alcohols 13, and Birch reduction of the derived acetates 14. Conversion of the ω -alkenyl-substituted cyclododecenes 4b and 14 to the dialdehydes 6 and 17 followed by McMurry Ti(0) cyclization and catalytic hydrogenation affords optically active [10.10]- and [22.10]betweenanene of R configuration.

The inherent chirality of *trans*-cycloalkenes was noted by Blomquist¹ in 1952 and experimentally confirmed some ten years later by Cope.² In a brilliant series of studies, Cope resolved

Scheme I

trans-cyclooctene^{2a} and correlated the (-)-enantiomer with (+)-tartaric acid thus establishing the absolute stereochemistry as (R)-(-).^{2b,3} He also found that while trans-cyclononene could

⁽¹⁵⁾ Greater amounts of epimerization occurred when the Jones oxidation of 11a/11b was performed in aqueous acetone. The use of acetic acid as solvent greatly accelerated the rate of oxidation (this solvent effect has previously been noted: Mueller, R. H.; DiPardo, R. M. J. Org. Chem. 1977, 42, 3210), which allowed this step to be performed at 0 °C. Although the trans-fused epimers could be removed by chromatography, this separation proved unnecessary on a routine basis (see ref 16).

⁽¹⁹⁾ Natural ptilocaulin nitrate has mp 183–185 °C (ref 2) and $[\alpha]^{23}_{\rm D}$ +74.4° (99.5% CH₃OH) (Prof. K. L. Rinehart, personal communication). We thank Prof. Rinehart for providing the optical rotation data as well as a sample of natural ptilocaulin nitrate. We are also grateful to Prof. B. B. Snider for providing spectroscopic data and a sample of racemic 1.

⁽¹⁾ Blomquist, A. T.; Liu, L. H.; Bohrer, J. C. J. Am. Chem. Soc. 1952, 74, 3643-7.

^{(2) (}a) Cope, A. C.; Howell, C. F.; Knowles, A. J. Am. Chem. Soc. 1962, 84, 3190-1. Cope, A. C.; Ganellin, C. R.; Johnson, H. W. Ibid. 1962, 84, 3191-2. Cope, A. C.; Ganellin, C. R.; Johnson, H. W. Jr.; Van Auken, T. V.; Winkler, H. J. S. Ibid. 1963, 85, 3276-9. (b) Cope, A. C.; Mehta, A. S. Ibid. 1964, 86, 5626-30. (c) Cope, A. C.; Banholzer, K.; Keller, H.; Pawson, B. A.; Winkler, H. J. S. Ibid. 1965, 87, 3644-9. (d) Cope, A. C.; Pawson, B. A. Ibid. 1965, 87, 3649-51. (e) Binsch, G.; Roberts, J. D. Ibid. 1965, 87, 5157-62.

⁽³⁾ Cahn, R. S.; Ingold, C.; Prelog, V. Angew. Chem., Int. Ed. Engl. 1966, 5, 385-415. See pp 400-3.